
Improving Walking in Place Methods with Individualization and Deep
Networks

Sara Hanson*

University of Southern California, USA
Richard A. Paris†

Vanderbilt University, USA
Haley A. Adams‡

Vanderbilt University, USA
Bobby Bodenheimer§

Vanderbilt University, USA

ABSTRACT

Walking in place is a standard method for moving through large
virtual environments when physical space or positional tracking is
limited. This technique has become increasingly prominent with
the advent of mobile virtual reality in which external tracking may
not be present. In this paper, we revisit walking in place algorithms
to address some of their technical challenges. Namely, our solu-
tions attend to improving starting, stopping, and speed control for
individual users. From a hand-tuned threshold based algorithm, we
provide a new, fast method for individualizing the walking in place
algorithm based on biomechanic measures of step rate. In addition,
we introduce a new walking in place model based on a convolu-
tional neural network trained to differentiate walking and standing.
Over two experiments we assess these methods against a traditional
threshold based algorithm on two mobile virtual reality platforms.
The assessments are based on controllability, scale, and presence.
Our results suggest that an adequately trained convolutional neural
network can be an effective way of implementing walking in place.

Keywords: Virtual environments, locomotion, walking in place,
convolutional neural network, perception

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; J.4 [Computer Applica-
tions]: Social and Behavioral Sciences—Psychology

1 INTRODUCTION

Moving through a virtual environment (VE) is one of the most
important interactions provided by virtual reality (VR). Although
natural methods of locomotion are desirable in immersive VEs [40],
in practice challenges such as limits to the size of a physically
tracked space [37, 46] often make them infeasible. In this paper, we
study locomotion methods that comply to an analogous technical
constraint–a complete lack of position tracking. In particular, we
focus on mobile VR as presented through inexpensive systems such
as the Samsung Gear, Google Daydream, and Oculus Go. This
family of devices provides only orientation tracking from the head-
mounted display (HMD). As a result, their applications frequently
forgo locomotion in VR entirely.

Traditional hand-held controllers can serve as an alternative
method for locomotion. However, they have repeatedly been demon-
strated to increase the effects of simulator sickness [26, 28], making
them a problematic solution for locomotion in VR. Other locomotion
techniques that do not involve peripheral devices, like buttons or
controllers, exist for mobile VR. Often, these techniques involve
gestures such as leaning or proxy walking [9, 13, 14], or they might
involve arm swinging [19,47]. In the current paper we study walking
in place (WiP), perhaps the most common of these techniques, as it

*e-mail:sdhanson@usc.edu
†e-mail:richard.a.paris@vanderbilt.edu
‡e-mail: haley.a.adams@vanderbilt.edu
§e-mail: bobby.bodenheimer@vanderbilt.edu

does not require position tracking and it has certain key advantages.
First, WiP proxy gestures are confined to the lower limbs, leaving
the hands free to interact with the VE in other ways (e.g., using the
buttons of the Samsung Gear or a paired controller for the Oculus
Go). Second, WiP techniques provide similar proprioceptive and
kinesthetic feedback to that experienced by real walking [23], which
is advantageous in acquiring spatial knowledge over more passive
techniques [25, 31].

Yet WiP methods are not widely used. This is largely due to per-
formance issues. Whitton et al. [44] found that their WiP method was
the worst of the locomotion methods that they compared; they con-
cluded that their implementation was poor. More recently, Zielasko
et al. [50] found that a seated WiP method performed poorly for
locomotion, whereas Bozgeyikli [3] found positive but middling
performance. Such results suggest that implementing WiP properly
is non-trivial. WiP methods typically suffer from three problems:
starting and stopping latencies, velocity control, and control of di-
rection [45]. In this paper, we focus on the first two, and do not deal
with the third. Direction control is an important consideration. How-
ever, given mobile VR’s lack of peripheral devices, we foresee no
easy solution outside of a gaze-directed or audio interfaces. We elect
to use a gaze-directed direction control similar to those implemented
in many other WiP interfaces.

Our goal is to improve WiP algorithms so that they are viable
and easy to use locomotion solutions for mobile VR. Latencies are
a known issue in WiP algorithms, because it is difficult to detect
when a person starts to walk in place and consequently when to
initiate motion or optic flow in an HMD. Similarly, it can be difficult
to determine when to cease motion in the WiP algorithm when
a proxy motion has stopped. Solutions to walking in place that
rely on external tracking sensors can mitigate this problem [8, 43].
However, solutions that rely solely on internal inertial measurement
units (IMUs) typically have considerable latency, because IMUs
are noisy and filtering them appropriately can cause slow system
responsiveness.

For velocity control, the challenge is in determining the rate of
optical flow during proxy motion. Optic flow should be associated
with one’s step rate during walking in place in order to match one’s
perception of self-motion. However, the perception of self-motion
based on gait is complex, not fully understood, and it varies depend-
ing on the locomotion context (e.g., real walking or treadmill [7]).
Nilsson et al. [20] have studied the relationship between step rate
and optic flow gain for WiP, but taking this into account is complex
as it depends on field of view.

In the current work, we propose two novel, individualized WiP
algorithms. We then compare these individualized methods to a
tuned threshold-based method. Our first algorithm uses an individ-
ual’s biomechanical information to customize thresholds for walking
detection. The second extrapolates walking in place patterns for
walking versus standing across a large data set using a convolutional
neural net (CNN). Both solutions seek to compensate for the variabil-
ity seen across individuals when walking in place. We implement
these methods on two commercially available mobile VR platforms,
the Samsung Gear and the Oculus Go. We then assess both the meth-
ods and platforms for controllability using an evaluation approach
inspired by Whitton et al. [44] and a new evaluation technique based



on distance estimation.

2 BACKGROUND

2.1 Locomotion in Virtual Environments
There are several reviews of locomotion techniques in VR that con-
centrate on walking in place methods [2, 24, 45]. Our current dis-
cussion focuses on mobile VR solutions without external position
tracking systems.

HMDs and smartphones track orientation through the use of
inertial measurement units (IMUs), which extract linear velocity
and acceleration as well as angular velocity and acceleration. IMUs
have been used to detect leg movement by attaching them to a
user’s shins [8, 12, 41] and to a user’s arms to detect arm swinging
motion [18, 47] during WiP. Wendt et al. [42] approximated a head
bobbing model from head tracking data. Tregillus and Folmer [38]
implemented VR-STEP with a real-time pedometry approach using
a smart phone’s inertial sensors. And Paris et al. [25] set thresholds
between acceleration values in the Samsung Gear VR to detect
forward walking. Our work also uses the IMU incorporated in an
HMD alone to detect WiP motion.

With the exception of the system proposed by Wendt et al. [42],
prior solutions for WiP have used preprogrammed thresholds to
detect movement. In some users, this is an effective method, and
it works in real time. However, there is notable variance in perfor-
mance across individuals. Just as gait characteristics vary, walking
in place can express itself in different movement patterns depending
on the posture and physical exertion of the individual. Wendt et
al [41–43], in contrast, draws from biomechanics literature to model
forward velocity as a quadratic function of step rate and height. In
particular, their work analyzes differences in gait cycles between
real walking and walking in place to develop better WiP solutions.
See Figure 1 for an illustration of gait cycles for real walking versus
walking in place. Nilsson and colleagues used empirical techniques
to determine velocity matches for stepping rates during WiP mo-
tions based on numerous factors [20–22]. In our work we wish to
individualize these ideas further by tuning the velocity to what each
subject might expect from a given step rate.

Figure 1: Simplified gait cycles based on Wendt et al. [43] for real walk-
ing (left) and walking in place (right) are shown. Center, a participant
performs WiP on top of cardboard to prevent drifting.

2.2 Machine Learning for Walking In Place
To the best of our knowledge, a pattern recognition approach has
not been attempted in earnest since early walking in place research.
In Slater et al.’s [36] original WiP algorithm, a simple feed-forward
neural network was implemented to extract patterns from the position
tracked information of a head-mounted display. Usoh et al. [40] then
used the same neural net to evaluate WiP against real walking and
flying in virtual environments. Razzaque et al. [29] then leveraged
the same neural network approach to analyze head motion data from
a position tracker to determine when the participant was walking in
place in their Redirected WiP method.

One form of deep learning, the convolutional neural network
(CNN), has performed well for many human activity recognition
problems [15, 48, 49]. As demonstrated in Yang et al. [48], CNNs
can reliably model local patterns, they are straightforward to train,
and they are generalizable since they require little domain specific
knowledge about the activities of interest. In particular, we chose
CNNs in this paper because of their suitability in classification
prediction problems and because they are usually easier to train —
our training data will be small by many machine learning standards.

2.3 Distance Estimation
The scale of space and how people perceive distance through HMDs
have been issues of long-standing concern in virtual environments
research. See Renner et al. [30] and Creem-Regehr et al. [5] for
surveys on these issues. Recent work by Buck et al. [4] and Kelly et
al. [11] examine how distances are perceived in modern commodity
level HMDs. We anticipate that the devices used in this paper—the
Samsung Gear VR and Oculus Go—would perform comparably
to contemporary devices, such as the Oculus Rift CV1. And, in
fact, both devices share hardware and software components with the
Oculus Rift CV1. However, to our knowledge, no one has thoroughly
examined spatial perception in these devices.

The goal of that body of work is to determine how spatial rela-
tions in a virtual environment are perceived by users wearing an
HMD; more specifically, the idea is to understand how users estimate
absolute egocentric distance. The method used for such estimation
is commonly blind-walking, and the idea behind such a task is that
users are performing a task in which the action (walking) is depen-
dent on the perceived distance to an object. Judgments of absolute
egocentric distance have been shown to be accurate in the real world
when assessed with blind walking up to at least 15m [17, 32].

In this paper, we take a perceived distance to an object and then
vary the task used to assess the perceived distance. That is, the task
will either be blind walking or blind walking in place. If our walking
in place algorithm is equivalent to real walking, then our results
should match. Thus, we measure the response of our walking in
place system by assessing how close the action of blind walking is to
the actions of blind walking in place, where we vary the parameters
of the walking in place algorithms.

3 RESEARCH DESIGN

Our current work presents three unique approaches to body-based
turning methods for WiP in which steering is indicated by head
orientation. Each technique infers linear motion in the direction
of a subject’s gaze when walking. Thus, turning or rotation in all
such mobile VR systems is head or gaze-based. Linear motion
is extracted from the inertial measurement unit (IMUs) from the
Oculus Go and the Gear VR systems. Using different devices may
allow us to discern performance discrepancies between different
hardware and software solutions for WiP. The IMU used in the
Samsung Gear VR is less sensitive than that of the Go, and it reports
signals using different units (g’s as opposed to m/s2), resulting in
different threshold values between devices.

Our methods use linear acceleration from the bobbing motion of a
user’s head when walking in place to impart motion in the direction
of their gaze. This is in contrast to the conventional pedometer
approach. Pedometers use pattern analysis techniques to recognize
repeating motions that are assumed to be steps. The repetition
requirement of pedometers leads to either unreliable detection when
the number of repetitions is low or severe lag when the number of
repetitions is high. Both behaviors are undesirable for comfortable
locomotion in immersive virtual environments.

3.1 Threshold Based Motion
The first method is derived from that of Paris et al. [25]. The state
machine consists of three states, one which is standing and two



Figure 2: VG is the target velocity (2.0 for threshold based WiP). Tl and Th are thresholds for vertical acceleration and set to 0.75 m/s/s. ha is the
head angle of the subject. V0 and t0 are set to the current velocity and time on each transition. The state machine above controls the velocity to an
average speed of roughly 1.65 m/s.

which constitute walking. Walking is represented by two repeating
states: the early stance and late stance states. The state machine
and associated parameters were constructed with the conditions
displayed in Figure 2. Users are considered to be stepping when the
magnitude of the vertical direction of acceleration, av is greater than
thresholds reported in [25] (0.075g or 0.75m/s2) and not stepping
otherwise. These thresholds are denoted Tl and Th in the figure. In
this implementation, Tl =−Th.

We desired an average walking pace of 1.65 m/s (see Nilsson
et al. [20] for this rate). Upon initial detection of WiP motion, the
early stance state is entered, and the magnitude of the velocity of
the user (optic flow rate) is exponentially decayed in an increasing
way, (i.e., 1− e−kt ) to a maximum speed where it remains until this
state is exited. The maximum goal speed, VG, is set to 1.25 ·1.65.
We multiplied our desired average walking speed by 1.25 because
numerical simulations indicated that this constant resulted in an
overall velocity approximately equal to 1.65 m/s. The early stance
stage transitions to the late stance state when the magnitude of the
vertical acceleration becomes less than the thresholds (Tl and Th).
In the late stance state, speed is exponentially decayed to 1 m/s. If
no vertical acceleration is detected for 0.5s, then the standing state,
in which velocity is decayed to zero, is entered. Constants for the
exponentials in all states were derived by trial and error in Paris
et al. [25] and they remain unchanged in the current work. These
values included: 0.4 for the growth rate, 0.2 for the decay rate, and
0.5s for the exit criteria. The other exit condition from the late stance
stage can occur if the pitch or roll of the head exceeded 20◦ (denoted
by ha in Figure 2). We included this condition to prevent strafing,
reduce simulator sickness, and stop motion when we detect a subject
is visually searching. Since our system only translates in the gaze
direction, visually searching while moving is not recommended.

3.2 Biomechanics-Based Motion

Our second approach to walking in place customizes the state ma-
chine of Figure 2 to an individual’s step rate and real walking rate.
It is a three step process that is data-driven based on an individ-
ual’s measurements. Prior work [42] modeled speed as a quadratic
function of step rate. In our method we use virtual step rate as a
replacement of real step rate. We define virtual step rate as the aver-
age time between successive “step peaks” in our IMU data stream.
A step peak occurs when WiP head motion creates a spike in head
acceleration followed by a local minimum in head acceleration. To
determine the appropriate thresholds for these peaks (step one) we
measure a user’s head acceleration in the up and down direction for
20 steps at varying WiP speeds (slow, medium, fast). We visually
identify the 20 peaks, and we set the upper threshold to the minimum
value of the 20 local maxima and lower threshold to the maximum
value of the 20 local minima. Extraneous local peaks within 0.25
seconds of a greater local peak are considered noise. Based on this
measurement, we determined Tl and Th within the state machine for
an individual for a given HMD.

Next, (step two), we have users step again for 10 seconds at slow,
medium, and fast rates, and we detect their step rate using these

thresholds. When a user passes both the high and low thresholds in
0.25 seconds, we say a step has occurred. We determine an average
step rate for each of these three step rates, rs, rm, and r f , given a
particular headset. Next, we have users walk 10m down a hallway
at a slow, medium, and fast pace, and we measure their average
walking speed, vs, vm, and v f . In prior work [8, 43] velocity was a
quadratic function of stepping rate and height only. This quadratic
has the form

v(r) = ar2 +br+ c (1)

where a, b, and c are coefficients mapping virtual step frequency
r to real world speed v. Using our three rate-velocity pairs for an
individual, we determine these coefficients for a particular user on a
particular headset.

Finally (step three), we take the algorithm as presented in Section
3.1 and the state machine of Figure 2 and modify it for the current
WiP method. VG is then based on the result of Equation 1, and
is set to 1.25v(r) so that the system will have an average speed
that roughly matches v(r). Additionally, Tl and Th are modified
as described earlier in this section. Note that they are no longer
symmetric as in the case of the previous model. Also note that
the state machine is customized for a particular individual and a
particular headset.

3.3 Convolutional Neural Network

The goal of our CNN WiP solution was to account for individual
differences in motion across users with a deep learning approach.
Given a sequence of triaxial linear acceleration values, our CNN
WiP solution determines the probability of the current state of the
user in real time. Specifically, we formulate WiP as a classification
problem for walking and standing states. The CNN modifies but
works with the basic state machine of Figure 2. In the next sections,
we first describe the system architecture. Then, we discuss the
preprocessing steps taken for data set generation that are specific
for our current problem, our training results, and how the CNN WiP
solution operates in VR.

3.3.1 Architecture

All CNNs consist of at least one temporal convolution layer, one
pooling layer, and one fully connected layer in a neural network.
Inspired by the architecture and optimization techniques suggested
by Saeed et al. [33], our CNN WiP architecture uses two depthwise
convolution layers, which are separated by a max pooling layer
for dimensionality reduction. Each convolution layer applies lin-
ear convolution to the input layer, adds a constant bias, and then
applies an activation function to produce an output. Rectified lin-
ear units (ReLUs) were selected for the activation function, given
their nonlinearity and their reduced likelihood of vanishing gradient.
The pooling layer downsamples along the spatial dimension of the
input, reducing the number of parameters. The truncated normal
distribution is used to initialize the weights of the neural network
as normal initialization has been demonstrated to alleviate the van-
ishing and exploding gradient problems experienced by artificial



Figure 3: Illustration of the CNN architecture used for walking in place activity detection. Our method uses a sequence of IMU data as input for the
network, which is trained to recognize walking and standing actions.

neural networks. In our model, we have used max pooling to apply a
maximum filter to subregions of the first convolutional layer output.

The remainder of the architecture is similar to other neural net-
works. The feature matrices generated by the previous operations
are combined and flattened to generate a vector, which is the fully
connected layer. And the tanh function is applied to introduce non-
linearity. Finally, the softmax function is applied to the final layer
to produce the probability distribution of the activity states (i.e.,
walking or standing). Figure 3 illustrates our entire system pipeline.

3.3.2 Dataset

To create training data for the CNN, seven research assistants were
enlisted to perform specific actions while wearing each HMD (Ocu-
lus Go and Samsung Gear VR). Five research assistants recorded
walking consecutively for 20 minutes in each headset. Two assis-
tants recorded standing for 20 minutes in each headset. The IMU
for each device was polled every 0.017 seconds for triaxial data
with an application developed in Unity. IMU data was extracted
using the Unity API and for the Gear and the OVR API for the Go.
Although this data was likely cleaned, we were not privy to the exact
techniques employed by the API.

The data was labeled ‘walking’ or ‘standing’ at each time step.
6044.08 total seconds of walking and 2061.78 seconds of standing
data were collected for the Go. 5541.37 total seconds of walking
and 2035.5 seconds of standing data were collected for the Gear.
The x, y, and z linear acceleration values were aggregated at each
time step and grouped into time sequences. This generated N x 3
input tensors for the CNN, where N indicates input width (number
of seconds times sampling rate).

3.3.3 Training

The Go and Gear systems used different IMUs. As a result, the
linear acceleration values between the devices varied. In comparison
to the Go, the Gear output created lower and less variable values. To
compensate for the differences between the two IMUs, 40 consec-
utive triaxial datapoints were used for the Oculus Go CNN and 60
consecutive triaxial datapoints were used for the Gear VR CNN to
construct input vectors. Each device was trained on its own data.

While the same architecture was used for both the Gear and Go,
the hyperparameters for each solution differed in order to obtain
comparable performance between devices. The first convolutional
layer was applied with a window size of 20 for the Go and 30 for
the Gear with a ReLU activation function. The max pooling layer
for both solutions used a stride of 2. However, the pooling filter
was of size 10 for the Go and size 20 for the Gear. The second
convolution filter used a kernel size of 2 for both devices. The output
from the second convolution filter was then flattened. The softmax

filter was next applied and calculated the probability of each activity
and returned a tensor of dimensions 1 by 2.

The CNN was trained using stochastic gradient descent to mini-
mize negative log-likelihood with batch size of 10 examples and a
learning rate of 0.0001. The reduced mean was used to determine
accuracy. The Go CNN was trained on an initial input width of 40
and required 5 training epochs to achieve 98.6158% testing accuracy.
Initially, with this same network model and hyperparameters, the
Gear testing accuracy was 85.16%. This accuracy was not consid-
ered high enough, hence the increase in the initial input width to
60 with training increased to 6 epochs to achieve 92.55% testing
accuracy for the Gear. The input width could not be lengthened
beyond 60 without causing noticeable lag when classifying activity
in the WiP method.

3.3.4 VR Integration

Our CNN architecture and optimization were implemented in Ten-
sorFlow [1]. And the virtual reality integration was developed in
Unity—a multi-platform game engine. For real time application in
Unity, the trained CNN classifiers require input IMU data sequences
to be in the same format (e.g., polling rate and input width) as used
during training. Given this input, the trained CNN classifier predicts
whether the user is currently ’walking’ or ’standing’ in real time.
This prediction is then used to inform forward motion of the user by
modifying the state machine described in Section 3.1 (Threshold
Based Motion). In this modified version of the state machine, the
transitions to and from the standing state are governed by the CNN.
When the CNN detects that a user is ’standing’, their velocity is
immediately set to zero and the state machine transitions into the
standing state. When the CNN predicts ’walking’, the state machine
transitions into the early stance phase. All other transitions are the
same as described in Section 3.1

In comparison to the Go’s CNN WiP solution, the Gear’s CNN
WiP solution more frequently misclassifies walking as standing.
This is experienced by the user as latency for walking motion when
walking in place. We suspect that this discrepancy in performance is
due to the Gear’s comparatively noisy IMU data and its subsequent
need for a longer input window to obtain comparable classification
results. Longer temporal sequences risk capturing multiple activity
states, which may compromise a network’s ability to distinguish
between activities. To compensate for the delay, a smoothing latch is
applied to the Gear’s CNN WiP classifier during runtime. As a result,
if the Gear CNN reports the user as walking in the previous 0.25
seconds, the individual is reported as still walking. This introduces
some lag, but has the benefit of preventing a number of start and
stop errors.



4 EXPERIMENT 1
4.1 Hypotheses
We are interested in assessing the overall controllability of the WiP
interfaces. And we believe that a system with high latency will
affect controllability of the interface. Inspired by the experiment
of Whitton et al. [44], in this experiment we have users traverse
corridors with several turns in them, which we call mazes, although
there is no possibility of getting lost. At various waypoints (gates)
along the maze, users are instructed to stop on a target—as close
to the target as possible. We measure the error between the target
and their actual stopping location. We hypothesize generally that
systems with high latencies and mismatches between stepping rate
and optic flow rate will be less controllable in this experiment, and
thus users will have worse performance. Specifically, we believe that
the biomechanical and CNN models will outperform the threshold
based model. We also believe that the IMU of the Samsung Gear VR
system is less sensitive than the IMU of the Oculus Go. Therefore,
the Gear will have inferior performance.

We measure simulator sickness, presence, and system usability in
this experiment, and we hypothesize that less controllable systems
will have lower presence and usability scores. Systems that have
strong mismatches between optic flow rate and apparent velocity
may be susceptible to simulator sickness. We do not believe any of
our implementations suffer from this, but we measure it regardless.

Figure 4: In this study we used the Samsung Gear VR with an S8
(left) and the Oculus Go (right).

4.2 Materials
The virtual environment was displayed using either a Samsung Gear
VR with a Galaxy S8 or an Oculus Go. The resolutions of the S8
and the Go are 1480x1440 and 1280x1440 per eye, respectively. The
fields of view were not measured but both are reported to be near
90◦-96◦. Each HMD weighed 460g. Subject motion was tracked
using the built-in IMUs of the Gear VR system or the Oculus Go.
Subjects provided input either through the touchpad of the Gear VR
or the motion controller provided with the Go.

4.3 Environment
Since Experiment 1 contains six conditions (2 headsets x 3 tech-
niques), six paths were designed. Each path contained 180 straight
segments connected via turns ranging between 90◦ and 135◦. Each
path segment consisted of two textured walls and two fence posts,
which we call a gate. Within a given path, subjects could see the
succeeding gate, but no farther. The layout of each of these mazes
and a segment of a path can be seen in Figure 5. One continuous
Voronoi textured floor plane spanned the entirety of the maze.

4.4 Participants
For the first experiment we recruited 21 college age students from
our institution between the ages of 18 and 25. All participants gave
written consent and were compensated $15 for the experiment, which
lasted roughly an hour and a half. Subjects were informed that they
would participate in six walking trials for a duration of 5 minutes

each, but the walking methods were not specified. Three subjects
were excluded from data analysis due to system malfunctions, and
therefore 18 (9 male and 9 female) subjects remained.

4.5 Procedure
A within subjects experiment was conducted as a 2 (headset: Gear,
Go) × 3 (WiP technique: threshold, biomechanical, CNN) design.
We blocked on headset to minimize the necessity of both switching
HMDs and describing how each HMD worked. Headset and WiP
technique were counterbalanced to prevent order effects.

Prior to entering VR, subjects were given brief instructions on
how to walk in place. Calibration was required for only the biome-
chanical motion condition and consisted of three parts. The first
phase of calibration requires subjects to walk in place for roughly 20
steps to determine an individualized threshold to detect individual
steps. Next, subjects were asked to walk in place at a slow, medium,
and then fast pace to determine the step rate detected by the system.
Finally to correlate stepping rate to optic flow we ask subjects to ac-
tually walk at a slow, medium, and then fast pace. Upon completion
of this calibration, subjects filled out a pre-test simulator sickness
questionnaire and then entered the first condition. In each condition
subjects were given five minutes to walk through the linear maze,
stopping at each gate. The layouts of these mazes are shown in
Figure 5, the ordering of the presented mazes was fixed. Subjects
were instructed to stop at each gate for at least one second but could
stop for longer, if necessary. The first three gates were considered
training gates and were excluded from any analysis. After five min-
utes had passed, subjects were instructed to stop and remove the
headset and complete three post-condition surveys.

4.6 Results
Experiment 1 includes several measurements of usability. We mea-
sure simulator sickness, controllability as measured by stopping
distance, presence as measured by a standard Slater-Usoh-Steed
(SUS) questionnaire [34, 35], and general usability which we assess
using the System Usability Scale [39].

4.6.1 Control

To measure controllability we introduce stopping error. Stopping
error is a measure of absolute distance from the center of the gate to
the stopping location of the user for each gate. We define stopping
location to be the location at which the longest stop in motion occurs.
We require that the stop be within 2m of the gate. The average
stopping error and standard error of the mean in each condition
can be seen in Figure 6. We ran a 2x3 (headset x WiP technique)
repeated measures ANOVA on stopping error. All assumptions were
checked or corrected for by SPSS and we found an effect of WiP
technique (F(2,34) = 9.412, p = .001). Post-hoc t-test comparisons
among conditions show that the threshold condition (δ =−.071, t =
−4.58, p < .001) and CNN condition (δ = −.055, t = −3.11, p =
.006) are significantly better than the biomechanical based condition.

4.6.2 SSQ

We administered a simulator sickness questionnaire before following
each condition and a pre-test questionnaire to provide a baseline
measurement. We found no effect of either condition or headset on
simulator sickness.

4.6.3 Presence

To assess presence we administered post-test SUS questionnaires
following each condition [34, 35]. As in Peck et al. [27], we trans-
formed responses into a binary value and considered responses of 5,
6, or 7 to indicate high presence while other responses indicated low
presence. The percentage of responses indicating high presence in
each headset can be seen in figure 7. A logistic regression with two



Figure 5: Top-down (right) view of the mazes used in Experiment 1. A zoomed in overhead view is shown in the middle and a first-person
perspective view is shown left. Each maze was randomly generated such that there would be no overlap and so that the subsequent gate would
be visible before making the turn.
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Figure 6: The stopping error measurements for the three WiP tech-
niques. The threshold based and CNN based techniques result in
subjects stopping significantly closer to the target than in the biome-
chanically based technique.

predictor values (headset and technique) revealed a significant dif-
ference between headsets in the presence evoked ( χ2(1) = 8.6617,
p = 0.0034 ), with the Oculus Go having significantly higher pres-
ence. No difference was found between the WiP techniques.

4.6.4 System Usability

Finally, to assess general usability of the conditions presented, we
administered a System Usability Survey consisting of ten standard
questions that measure ease of use. As with the SUS presence
questionnaire, subjects completed this following each condition. We
ran a 2x3 (headset x WiP technique) repeated measures ANOVA on
the total score and found no significant differences between either
factor.

4.7 Discussion
There was not a strong difference in controllability between the
HMDs in this experiment, although the Oculus Go evoked signifi-
cantly higher feelings of presence. The presence result is interesting,
because the resolution of the Gear is actually higher than Go. The
biomechanical WiP method did not perform as well as either the
tuned threshold method or the CNN in controllability. Figure 6
shows that the biomechanical method of detecting steps and control-
ling velocity results in the worst controllability of the system. This
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Figure 7: Presence evoked in each headset collapsed across WiP
techniques.

method is the only one that allows speeds above 2.0 m/s, and this
increased speed is likely the reason for the decreased controllability.
Subjects are able to reach much higher speeds by stepping faster.
The point is that there is a speed/controllability tradeoff in that mov-
ing at a high speed makes attempting to stop at the intended location
more difficult. Users were either not willing or not able to regulate
this tradeoff adequately with the biomechanical method, whereas
the other methods enforced a speed limit. We will address this fur-
ther in the general discussion, but it is possible that our mapping
from stepping rate to optic flow should be better informed by HMD
locomotion, as suggested by Durgin et al. [7].

5 EXPERIMENT 2
This experiment examines some of the issues raised by Experiment 1
in more detail by comparing real walking performance in a distance
estimation task to WiP performance. That is, we will allow people
a period of adjustment to the WiP technique to understand how
optic flow correlates with distance, then we will judge how well
they are able to use this information in a distance estimation task.
Performance is compared to real walking as a metric.

5.1 Hypotheses
In this experiment, we perform egocentric distance estimation by
blind walking (in place). During walking or WiP motion, no visual



feedback is provided to the subject. We thus test how robust the WiP
technique is by evaluating how well participants are able to use the
technique to perform a perception task. And we compare this with
their performance on the same task with the same headset using real
blind walking. If WiP locomotion is equivalent to real walking, as
we would ideally like, then these should be same. Despite the results
of Experiment 1, we hypothesize that the CNN and biomechanical
techniques will yield answers closer to real walking than the thresh-
old method. However, in view of Experiment 1, we hypothesize that
the CNN method will outperform the biomechanical method.

5.2 Materials
The same HMDs amd WiP techniques from Experiment 1 were used
for Experiment 2.

5.3 Environment
Two environments were used during this experiment. The first is a
linear maze as described in Experiment 1 and the second is sparse
Voronoi textured ground plane.

Figure 8: In Experiment 2 subjects stood at one end of a hallway (left)
and after judging the distance, walked down the hallway based on that
judged distance. Subjects saw a sparse Voronoi textured environment
with no visual distal information beyond the puck itself (right). In this
image the puck is 7.5m from the user.

5.4 Experimental Design
Experiment 2 is again a within subjects design with the same six
conditions as in Experiment 1. Additionally, we add a real walking
condition as a baseline, or ground truth, condition. As in Experiment
1, we blocked on headset, and the headset used for the real walking
condition was randomized. The real walking condition was ran-
domized and balanced within these conditions such that six subjects
performed real walking first, six subjects performed real walking
after completing all WiP techniques in one headset, and six subjects
completed real walking as their final condition.

Each of the six WiP conditions consisted of two phases. In the
first phase, we take a maze as described in Experiment 1 and allow
subjects to walk in it for 60 seconds to become familiar with the
method, the HMD, and the speed at which they can move. The
second phase consists of nine distance estimation trials. In each trial
subjects are stationary and are presented with a red hockey puck as
a target (Figure 8). They are then asked to estimate the distance to
that target. Once subjects indicate that they are familiar with the
target, the virtual environment disappears, and subjects use the WiP
technique or real walking to walk to the puck. The nine trials consist
of three repetitions of three distance (5m, 7.5m, and 10m). Subjects
pressed either the touchpad or the trigger on the motion controller to
hide the puck and environment and enable tracking which allowed
them to move. The system recorded distances during WiP trials
and the experimenter used a laser measuring system to measure the
distance walked. In the real walking condition, subjects walked

down a 70m hallway and no feedback on the distance traveled was
given. Subjects were only alerted if they began to walk too far left
or right with a tap on the shoulder. No subject reached the end of
the hallway nor did they run into any walls.

5.5 Results
We are primarily interested in comparing the accuracy of how users
performed in the WiP conditions with the accuracy of users in the
real walking condition, rather than absolute accuracy. The measure
we use is the ratio of judged distance to true distance, where by
“judged” we mean both perceived and acted upon through the WiP
system. Thus,

Judged Ratio o f True Distance =
Judged Distance

True Distance
.

We average this value across conditions for each subject and
trial to find the mean judged ratio in Table 1. Note that both the
Gear and Go show signs of distance underestimation of the vir-
tual environment. Subjects underwalked by an average of 26%.
This amount of distance compression is different than has been
reported for the Oculus Rift in Buck et al. [4]. To compare this
with WiP methods, we ran a repeated measures ANOVA with
headset and WiP technique as factors. We found a main ef-
fect of both headset (F(1,971) = 9.933, p = .002) and technique
(F(2,971) = 20.023, p < .001). There is also a significant interac-
tion between headset and technique (F(2,971) = 7.964, p < .001).
The interaction reveals that the biomechanical technique in the Go
HMD is higher than in the Gear HMD (see Figure 9). Post-hoc
Tukey tests revealed a significant difference between each of the
three WiP techniques with the CNN based motion having the lowest
amount of over walking.

5.6 Discussion
The CNN technique performed significantly better than the other
two methods. Although not the main focus of this paper, signifi-
cant distance underestimation occurs in both HMD platforms. The
biomechanical method had significantly different performance in
the Go and Gear HMDs, which was surprising since we did not find
that in Experiment 1. One possibility is that the Go is more sensitive
to noise than the Gear, which makes it harder to control. We do
not particularly observe this in data we collect, nor did we find this
difference in Experiment 1. In examining the performance of the
individual subjects in this experiment, we note that two subjects
considerably overestimated the distance in the biomechanical WiP
method compared to all other subjects and compared to themselves
(judged ratios of 4 compared to ratios of 1.4 for the next highest in
the biomechanical WiP condition; 1.4 was also the highest ratio in
the Gear). We have no explanation for these ratios. They were not,
for example, the first trials that the subjects did in WiP distance esti-
mation, nor were they the first trials with the Go. Eliminating these
subjects and re-performing the analysis above does not affect the
main effect of WiP technique — the CNN method still outperforms
the other methods — but it does eliminate the interaction and the
main effect of headset. In contrast to experiment 1, there was no
visual feedback with which the subject could adjust their walking
mechanics to stop near the goal. We thus attribute the improved
performance in the CNN based condition to the system having bet-
ter recognition of general walking than that of the threshold based
condition.

6 GENERAL DISCUSSION

In this paper we compare three WiP methods on two different mobile
VR platforms — the Gear VR and Oculus Go — and we assessed
both the WiP methods and the mobile VR platforms. We are in-
terested in mobile VR platforms because they do not have external
positional tracking, and thus our implementations use only the IMUs



Method Total Mean Gear Mean Go Mean
CNN .936 .873 .999

Biomechanical 1.246 1.025 1.448
Threshold 1.085 1.112 1.058

Real .739 .704 .774
Table 1: Ratio of over walking collapsed across headsets for each
condition.
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Figure 9: Ratio of the judged distance calculated for each headset
(left) and technique (right) compared to real walking in Experiment 2.

of the systems to detect WiP motions. The basic WiP method we
started from was a hand-tuned implementation. We modified it first
to incorporate a data-driven biomechanical approach based on a
model that relates step rate to velocity. We also modified the basic
method to incorporate a type of deep network, a convolutional neural
network or CNN, to apply an even more data-driven approach in
determining how WiP is executed. We assessed these methods and
platforms for controllability and performance in two experiments
and found, generally, that the CNN performed best in both.

We had originally hypothesized that there would be a difference
in the two mobile VR platforms. This hypothesis was based on our
experience designing the CNN, where the CNN for the Gear VR
was more troublesome to build and never performed as well in initial
tests as that for the Go. We did find a difference in presence ratings
between the two platforms, with the Go having a higher presence
rating than the Gear VR, but we are reluctant to draw the conclusion
that trouble with the IMU in the Go (from building the CNN) resulted
in higher presence in the Go and no other differences. Rather, we be-
lieve the higher presence reflects ergonomic issues with the comfort
and fit of the Go, although a more careful investigation of this would
be needed. In particular, we note that there is no difference in the
weight of the HMDs, the resolution of the Gear is actually superior
to that of the Go, and there was no detectable difference between
platforms in terms of usability or simulator sickness. However, there
was also a difference between the two platforms in Experiment 2
with one of the WiP implementations, where a subset of subjects
(two out of eighteen) had significantly worse performance in the Go.
We currently have no explanation for this and it is a topic for future
investigation.

We also hypothesized that the CNN would perform well, and this

hypothesis was confirmed in both experiments. We offer a conjecture
(based on our observations during both experiments) as to why the
CNN performs better. WiP gestures in general are usually unnatural,
as has been noted elsewhere [23]. Thus, a marching gesture quickly
becomes tiresome, and people resort to a more relaxed type of
motion. In Experiment 1, the duration that people had to walk
was considerable for a marching motion (five minutes). In this
experiment, if they faltered in their motion, however, they received
immediate visual feedback that they were not moving and had to
pick up their step. In Experiment 2, subjects received no visual
feedback if the WiP motion was working or not. In either case, we
believe that the CNN, because it was data-driven and based on a
large training set of people walking in place for a considerable period
time, was more robust to variations in the WiP walking gesture. It
could thus better interpret when people intended to walk in place
and when they intended to stop.

We hypothesized that our biomechanically-based method would
perform well, and this hypothesis was not confirmed. This WiP
method did not perform as well as we intended. The biomechanical
method was not as controllable as the other two methods, as demon-
strated by Experiment 1. Perhaps it is not surprising, therefore, that
it underperformed in the second experiment. The reasons why it is
not as controllable are a topic of ongoing inquiry. It is possible that
the gain of the system, even though it is based on an individual’s
walking speed, is too high. Some evidence for this can be found in
the work of Durgin et al. [7].

We note that our experiment found that subjects underestimated
distances in both platforms as judged by egocentric blind walking.
Both platforms are lightweight and have large field of views, but
the amount of distance underestimation is not consistent with other
commodity level devices that have recently been tested [4, 6, 11, 16].
Further investigation of this issue seems warranted.

There are many avenues for further research in this area. Ex-
panding the role of the CNN to cover more functionality of the
WiP algorithm, such as velocity control, seems a clear path for-
ward. Other machine learning methods, such as recurrent neural
networks [10] may offer advantages over CNNs for walking in place,
since they might be able to capture walking sequences better. The
addition of extra functionality such as velocity to the neural network
increases the training complexity of it and different frameworks may
give different results. This is also a question for further work.

We did not directly assess starting latencies in this work, and
determining how they affect the quality of the WiP interface is itself
an open problem. And there are clear directions in addressing how
biomechanics and individualization can be better accomplished.

7 CONCLUSION

This research has shown that WiP interfaces can be successfully
implemented in a data-driven manner on mobile VR platforms, and
that people can use them successfully. In particular, we have shown
that a deep network approach to WiP systems can lead to a successful
locomotion interface on a commodity-level system without external
position tracking.
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